
Eur. Phys. J. E (2023) 46:13
https://doi.org/10.1140/epje/s10189-023-00268-9

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Flowing Matter

Assimilation of statistical data into turbulent flows using
physics-informed neural networks
Sof́ıa Angriman1,2,a, Pablo Cobelli1,2,b, Pablo D.Mininni1,2,c, Mart́ınObligado3,d, and
Patricio Clark Di Leoni4,e

1 Facultad de Ciencias Exactas y Naturales, Departamento de F́ısica, Ciudad Universitaria, Universidad de Buenos Aires,
1428 Buenos Aires, Argentina

2 Instituto de F́ısica del Plasma (INFIP), Ciudad Universitaria, CONICET - Universidad de Buenos Aires, Buenos Aires
1428, Argentina
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Abstract When modeling turbulent flows, it is often the case that information on the forcing terms or the
boundary conditions is either not available or overly complicated and expensive to implement. Instead,
some flow features, such as the mean velocity profile or its statistical moments, may be accessible through
experiments or observations. We present a method based on physics-informed neural networks to assim-
ilate a given set of conditions into turbulent states. The physics-informed method helps the final state
approximate a valid flow. We show examples of different statistical conditions that can be used to prepare
states, motivated by experimental and atmospheric problems. Lastly, we show two ways of scaling the res-
olution of the prepared states. One is through the use of multiple and parallel neural networks. The other
uses nudging, a synchronization-based data assimilation technique that leverages the power of specialized
numerical solvers.

1 Introduction

Data Assimilation [1,2] is the discipline in charge of
reconstructing dynamical systems states by merging
models and observations. It has three main motivations
(1) dealing with data that is, due to the collection tech-
nique used, sparse, ungridded and noisy, (2) the tra-
jectories of chaotic systems diverge in finite times and
thus need to be corrected, and (3) the models may not
be capturing the full extent of the physical processes
involved. Moreover, data can come in the form of direct
measurements of state variables or of observations, such
as precipitation or an averaged quantity of the state
variables. This work will focus on the case where only
average (or statistical) data is available, such as the case
of asynchronous measurements of a flow, and where
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the flow is close to a homogeneous isotropic flow but
exhibits unusual statistics and its forcing term is not
properly known. In particular, our motivation comes
from analyzing hot-wire measurements in the bulk of
a wind tunnel being subject to an active grid forcing,
although the ideas and procedures presented could be
readily expanded to other usecases.

There are many families of techniques and approaches
available in the data assimilation (DA) realm. The two
main ones are ensemble based methods [3] and vari-
ational methods [1]. Recently, stochastic methods [4]
and machine and deep learning techniques [5] have been
making great strides in this area. We present a method
based on physics-informed neural networks (PINNs) [6].
PINNs have been used to solve inverse problems [7,8]
and to reconstruct turbulent flows out of measurements
[9,10]. PINNs work by minimizing a loss function con-
sisting of two terms, a data term involving initial condi-
tions, boundary conditions and/or state variable mea-
surements, and a physics term involving the residuals
of the equations of motion. The method presented here
takes a seed flow, e.g., coming from a homogeneous
isotropic turbulence DNS, and assimilates the statis-
tical observations using a modified PINN. The modifi-
cations are twofold, (1) we add a target term based on
mean quantities to the loss function (in addition to the
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data and physics terms already present), and (2) the
data used for the data term is updated after a certain
number of epochs iteratively, facilitating the assimila-
tion procedure. The Physics-Informed term regularizes
the training by enforcing the residuals of the Navier–
Stokes equation evaluated over the solution to be close
to zero, and thus keeping the solution fluid-like. Stem-
ming from the facts that PINNs can show errors when
assimilating turbulent data [11] and that their parallel
implementations are a matter of active research [12],
we add a second step to our method where we use
nudging [13,14], a synchronization-based DA protocol,
to increase the resolution of the assimilated fields and
increase their compliance with the equations of motion.
We remark that an approach based only on (modi-
fied) PINNs is possible, using nudging provides added
reassurance and simple workaround to some problems
(more details below). Also, other techniques based on
Generative Adversarial Networks, such as [15–17], could
be used to increase the resolution of the assimilated
fields, but as these are not equation-based we chose not
to consider them.

As stated above, the number of DA tools is vast,
and similar objectives can be achieved with other tech-
niques. Many factors come into play when choosing a
DA scheme, these range from costs, to desired accuracy,
easiness of implementation and versatility. Which one
to choose will depend on each application. It is not our
intention to provide an exhaustive comparison between
the different approaches, but to introduce a new alter-
native with both merits and drawbacks. Of the many
works in the literature involving data assimilation of
turbulent flows, two that are very close in spirit to the
work presented here are [18,19]. In both cases, varia-
tional methods are used to assimilate statistical data
into the evolution of a turbulence model in order to
improve their accuracy. An overall view of classical DA
techniques in the geosciences is presented in [2], a recent
review on PINNs and its variants is published in [20],
and a detailed comparison between PINNs and adjoint-
based methods is performed in [11].

Finally, we would like to note that the DA setup we
present here is also similar to the problem of turbulent
state generation. In this problem, the goal is to gen-
erate a field that resembles a turbulent field without
having to solve the Navier–Stokes equations explicitly.
Techniques for generating synthetic homogeneous and
isotropic turbulent states based on Fourier decomposi-
tions go back as far as Kraichnan [21] and have been
extended to wall-bounded flows, where the goal is usu-
ally to generate inflow conditions for boundary layer
or channel flow simulations [22–24]. The idea behind
these studies is to generate turbulent states by super-
posing Fourier modes with random phases, but setting
their amplitudes and temporal evolution so that they
satisfy Kolmogorov’s spectra. Another condition that
is often imposed is that the resulting fields should be
divergence-free. As we do not use any direct state vari-
able measurements in our procedure, but only assimi-
late statistical information into a seed flow, we are gen-
erating a particular state as the aforementioned tech-

niques do. The key difference is that our seed flow (and
the addition of the nudging step too) comes from a fully
resolved direct numerical simulation of a homogeneous
and isotropic turbulent flow.

The paper is organized as follows. In Sect. 2, we
present the preparation method and the upscale proce-
dure. In Sect. 3, we describe the different experiments
performed in this work. In Sect. 4.1, we show the results
obtained. Finally, in Sect. 5 we outline our conclusions
and future lines of work.

2 Methods

2.1 Modifying physics-informed neural networks

The preparation method we present is based on mod-
ified PINNs [6]. In its original form, PINNs approxi-
mate solutions of partial differential equations. They
take space and time coordinates as inputs, and output
the desired fields. Their loss function is comprised of
a standard L2 norm of the output and the available
data, the data term, and a regularization term com-
posed of the residuals of the partial differential equa-
tions, the so-called physics term. During training, the
loss function is minimized, and the result is a regres-
sion on the data that satisfies the equations of motion.
The architecture of the neural network itself is usu-
ally a standard fully connected multilayer perceptron.
For our purposes, we modified the PINN in two ways.
The first is by adding a target term to the loss func-
tion which enforces the target constraint that we want
to impose. Taking (x, y, z) to be the three Cartesian
spatial coordinates, u0 the data available on the veloc-
ity field, and u = (u, v, w) the velocity field and p the
pressure outputted by the PINN, and using the incom-
pressible Navier–Stokes equations with viscosity ν as
our partial differential equations of choice, the total loss
function then takes the form

L = Ld + λpLp + λtLt, (1)

where

Ld =
1

Nb

∑

{i}

(
ui − u0

i

)2
, (2)

is the data term,

Lp =
1

Nb

∑

{i}

[(
∂ui

∂t
+ ui · ∇ui + ∇pi − ν∇2ui

)2

+ (∇ · u)2
]

, (3)

is the physics term, and Lt is a problem-dependent tar-
get term. The subscript i labels the point and time in
which the fields are evaluated, i.e., ui = u(xi, yi, zi, ti).
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The whole set of points is separated into mini-batches,
i.e., subsets of the dataset in which the gradient of (1)
is evaluated and then used to update the hyperparam-
eters of the network during the training procedure, of
size Nb, and the actual set of points {i} that makes up
each mini-batch is picked at random out of the whole
spatio-temporal domain where the problem is defined
at each iteration. The hyperparameters λp and λt act
as balancing terms between the different parts of the
loss function. In typical neural network fashion, a PINN
can then be trained using a mini-batch gradient-descent
algorithm such as Adam.

The other modification we introduce is that we
update the data term u0 after a certain number of iter-
ations, and then continue with the training. The initial
data used when starting the training acts as a seed, and
should come from a previously-performed simulation of
the partial differential equations (PDEs), which in our
case are the Navier–Stokes equations. Once the first
training cycle is completed, the seed data is replaced
by the output of the PINN at that stage. Thus, in each
data update cycle, the data in the data term are closer
to satisfying the target term in the loss function. Note
that a new seed is needed each time an independent
realization of the fields needs to be generated. In DA
parlance, the seed data would be the system state com-
ing from a previous forecast, while the output of the
whole training procedure would be the analysis.

2.2 Upscaling the prepared fields

Since the numerical study of turbulent flows requires
high spatial resolution, we need to be able to increase
the resolution of the PINN-generated state. This can be
a challenge for neural networks, as computation of tur-
bulent states at large Reynolds numbers usually require
significant amounts of memory and computing power.
One way of achieving this is by decomposing our spatio-
temporal domain and running several PINNs in paral-
lel, as per the C-PINN method [12]. While we rely on
this idea to increase the total time window used (more
details on this below), it still presents considerable tech-
nical challenges when trying to upscale states to very
high spatial resolutions. Therefore, we present another
way of upscaling the prepared fields based on the nudg-
ing technique [13,14]. Nudging works by adding a relax-
ation term to the r.h.s. of the equations of motion that
penalizes the evolved flow when it strays away from
some given reference data, uref. The resulting equations
take the form

∂tu + (u · ∇)u = −∇p + ν∇2u − αI(u − uref), (4)

where the last term on the r.h.s. corresponds to the
nudging term, which penalizes the distance between
the input reference data uref and u. The amplitude of
the nudging term is controlled with α, and I is a fil-
ter operator which acts only where data is available.
In this work, I is a band-pass filter in Fourier space,
which projects the spatial part of u(x, t) on the range of

modes [k0, k1] in which the reference field uref is known,

Iu(x, t) =
∑

k0≤|k|≤k1

û(k, t) exp(ik · x). (5)

As a rule, the reference field (in our case, the output
of the PINN) is also known in a given time interval
[0, T ], with a time cadence τ . The initial condition used
to evolve Eq. (4) corresponds to setting u(t = 0) =
uref(t = 0). For the evolution in between successive
observations of uref (i.e., for time steps shorter than τ),
this field is linearly interpolated. Note that Eq. (4) is
evolved in time only in the interval [0, T ], for which uref

is available.
Under this kind of setup, nudging has been shown

to be able to reconstruct the flow at the scales where
information is provided, while filling in the smaller
scales with dynamics that must be compatible with the
nudged scales even at high Reynolds number [13,14].
Thus, the upscaled field will reproduce the prepared
field in the larger scales, and have dynamically consis-
tent turbulent smalls scales. Finally, as to solve Eq. (4)
a “classical” PDE solver must be used (e.g., a pseu-
dospectral solver), we have the added advantages of
having superior error convergence in the final states.
To this end, we can make use of existing and already
available highly scalable parallel solvers [25].

Note that the procedure discussed here is different
from methods that use large-eddy models to generate
the large scales in the flow, and use neural networks to
fill in the missing information on the small scales of the
flow [26,27]. Instead, here the PINN is used to gener-
ate data compatible with the physics and with available
large-scale or statistical information (e.g., from obser-
vational data or experiments), and a PDE solver is
then used to generate physically compatible small-scale
flow features. Also note that when utilizing PINNs to
solve turbulence models such as the Reynolds-Averaged
Navier Stokes equations [20,28], statistical data is used
during training, as this is what the models themselves
solve for. In our case, we are using statistical data but
using the full Navier–Stokes equations, which solve for
the full velocity and pressure fields.

3 Experiments

We report on three separate experiments. In all three
experiments, the original seed field came from a homo-
geneous and isotropic forced DNS of the Navier–Stokes
equation, performed with a resolution of 323 grid points
using a pseudospectral method with periodic boundary
conditions, in a computational box of size (2πL0)3 and
in a time window of T = 3T0, where L0 and T0 are,
respectively, the characteristic length and time scales
of the flow, and amounting to a Reynolds number of
Re = U0L0/ν = 80. The low spatial resolution is asso-
ciated with limitations of the PINN, but also used to
highlight the upscaling procedure. In light of the moti-
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vations for this work (cases in which observations or lab-
oratory measurements are incomplete, e.g., with access
to statistical information of only one field component),
all preparations are performed over the x-component of
the velocity. In the seed, this component has zero mean,
standard deviation σ0 = 0.5U0, centralized third-order
moment 0.175U0 and centralized fourth-order moment
0.66U0, where U0 = L0/T0 is the flow characteristic
velocity.

In Experiment 1, we use the method to impose a
target mean profile on the x-component of the velocity
field with the shape u0(y) = 0.1U0 sin(y). The target
term in the loss function given by Eq. (1) then takes
the form

Lt =

⎛

⎝

⎡

⎣ 1
Nb

∑

{i}
ui(y)

⎤

⎦ − u0(y)

⎞

⎠
2

, (6)

where the mini-batch subsets {i} are all at different but
fixed values of y.

In Experiments 2 and 3, we impose the value of the
centralized high order moments moment of u. Their tar-
get terms take the general form

Lt =

⎛

⎝ 1
Nb

∑

{i}
ui

⎞

⎠
2

+

⎛

⎜⎜⎝

√√√√√ 1
Nb

∑

{i}
u2
i −

⎛

⎝ 1
Nb

∑

{i}
ui

⎞

⎠
2

− σ0

⎞

⎟⎟⎠

2

+

⎛

⎝ 1
Nb

∑

{i}

⎡

⎣ui − 1
Nb

∑

{i}
ui

⎤

⎦
n

− mn
0

⎞

⎠
2

, (7)

where the first and second terms are added to keep
the mean and standard deviation from changing val-
ues. Note that we use the n-th order moment and not
its n-th root in the loss function as this results in bet-
ter convergence. In Experiment 2, we use n = 3 and
m0 = s0, while in Experiment 3 we use n = 4 and
m0 = k0. While in principle the method works too if one
tries to impose the third- and the fourth-order moments
simultaneously, this can impose tension when training
as the third-order moment tires to skew the distribu-
tion, while the fourth tries to symmetrize it. Therefore,
due to this fact and the lack of a properly motivat-
ing case to include both moments, we decided to not
include a fourth Experiment where both moments were
modified.

The same neural network architecture was used in
all three cases, a fully connected multilayer perceptron
with sines as activation functions, in practice a SIREN
[29] with 8 hidden layers of 200 neurons each. The
spatio-temporal domain of volume (2πL0)3 and time
window length T = 3T0 was split into four subdomains
along the temporal dimension, so four networks were

trained in each experiment with the final results con-
catenated at the end and treated as a whole. The bal-
ancing hyperparameters were chosen to be constant and
with values λp = 10−4 and λt = 1, and the mini-batches
had Nb = 10,000. Following standard practices [10],
we added input and output normalization layers. We
performed four data update cycles, and for each cycle
the networks were first optimized for E0 epochs (where
an epoch equals the number of iterations required to
cover the whole dataset with mini-batch samples) using
a learning rate of 5 × 10−5, followed by E1 epochs
with a learning rate of 5 × 10−6. In Experiment 1,
E0 = 1000 and E1 = 1000, in Experiment 2 E0 = 500
and E1 = 1000, and in Experiment 3 E0 = 1000 and
E1 = 2000.

Once training was completed, the resulting PINNs
were evaluated on a uniform grid of 5123 spatial points
every Δt = 3.75 × 10−2 T0, resulting in a total of 80
snapshots spanning a time window of T = 3T0. These
fields were used as the reference fields in the nudging-
based upscaling procedure, as described in Sect. 2.2.
The nudging was performed with the same solver and
boundary conditions used to generate the seed field,
but at resolution of 5123 grid points. The band-pass
filter I acted between k0 = 1/L0 and k1 = 9/L0, which
corresponds to the range of wave numbers contained
in the original 323 resolution seed field. The maximum
wavenumber in the upscaled fields is kL0 = 170. The
Reynolds number of the nudged simulation is of order
1000.

4 Results

4.1 States generated by the PINN

We start by presenting results for Experiment 1. In
Fig. 1a, we show the evolution of the data plus target
and physics parts of the loss function, while in panel
(b) we show the target mean profile compared against
the mean profile of the seed and those of the output at
the end of each data cycle [labeled as P0 to P3, and
indicated with arrows in panel (a)]. Visualizations at
t = 1.125T0 and z = π/L0 of the seed (in its original
323 grid point resolution) and the final PINN-prepared
field (evaluated using 5123 grid points), i.e., P3, are
shown in Fig. 2a, b, respectively. Through the successive
iterations and cycles, the preparation method is able
to impose the mean profile while still resembling the
original seed field and also complying with the Navier–
Stokes equations (up to some error of order 5×10−3 as
per Lp in Fig. 1a), thus retaining its fluid-like qualities.

Experiments 2 and 3 show similar results. In Fig. 3a,
we show the evolution of the different parts of the
loss function for Experiment 2, while in panel (b) of
the same figure we show the evolution of the central-
ized third-order moment normalized by the target value
s0. The dashed red line indicates the target value we
want to attain, while the dotted green line indicates
the value of the original seed field. The prepared field
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Fig. 1 Results for the training of the PINN in Experiment
1: a Evolution of the Ld + Lt and Lp losses as a function of
the training epoch. b Mean target profile, and mean u profile

at t = 1.125T0 for the seed field and for the PINN-prepared
field at different instants during training (P0, P1, P2, and
P3, respectively, as marked in panel a)

third-order moment converges to the desired value after
two or three update cycles of the PINN. In Fig. 2d, we
show a visualization of the prepared field, which again
shows a resemblance with the seed field, although a
close inspection reveals differences with the result pre-
pared in Experiment 1 in Fig. 2b.

Finally, the results for Experiment 3 are shown in
Fig. 4, where we plot the evolution of the loss func-
tion in panel (a), and the evolution of the central-
ized fourth-order moment normalized by k0 in panel
(b). The dashed red and dotted green lines in panel
(b) indicate the target and original values of the seed,
respectively. Compared to Experiment 2, the fourth-
order moment converges much faster than the third-
order moment. Moreover, the value obtained after con-
vergence fluctuates less after a few data update cycles.

4.2 Upscaling

In this section, we present the results of the nudging-
based upscaling procedure. As explained above, the
PINN-prepared fields obtained in the previous section
are used as reference fields to nudge a simulation and
generate upscaled versions (i.e., a version of the fields
expected to have physically valid finer details and small-
scale features, while keeping the imposed conditions by
the PINN). In all cases presented, the nudged simula-
tion was able to synchronize its large-scale motion to
the reference data supplied.

Figure 5a shows the energy spectra of the nudged
field u, of the reference field uref, and of the differ-
ence between both fields, u − uref, for Experiment 1.
The shaded region of the spectra indicates the range of
nudged wave numbers (i.e., the range of scales in which
the flow generated by the PINN has relevant infor-
mation). In that region, the spectrum of the nudged
simulation closely follows the spectrum of the refer-
ence field, while the spectrum of the difference of the
two fields is several orders of magnitude smaller than
any of the two fields, indicating that indeed the large
scales of the nudged field are synchronized with the

large scales of uref. For kL0 ≥ 10 the nudged simula-
tion fills in the missing scales, as energy cascades to
smaller scales following the turbulent dynamics of the
Navier–Stokes equations. In other words, the nudged
field has a spectrum compatible with a turbulent flow,
with an inertial range and a dissipative range. This is
further confirmed in Fig. 2c that shows a visualization
of the nudged u velocity field (i.e., the upscaled field),
compared to the reference (i.e., the prepared field) in
panel (b). The nudged field has finer structures while
retaining the large-scale characteristics of the prepared
field.

Figure 5b shows the mean profile 〈u〉x,z (i.e., averaged
over x and z) as a function of y/L0, for the nudged and
reference velocity fields. The target mean profile is also
shown for comparison. The nudged simulation is able
to increase the scale separation of the prepared field
(i.e., to create finer fluctuations) while maintaining the
imposed mean profile.

Upscaling experiments 2 and 3 leads to similar
results. The resulting spectra are similar to those shown
in Fig. 5a and as a result are not shown for the other
experiments. As in the case of Experiment 1, the nudged
fields have finer structures. This fact can be appreci-
ated in the visualizations in Fig. 2e, g, respectively, for
Experiments 2 and 3, where, again, the nudged sim-
ulations have smaller and finer structures than their
reference fields.

In Fig. 6a, b, we show the time evolution of the stan-
dard deviation (normalized by the target σ0) and the
centralized third-order moment (normalized by the tar-
get s0) of the x-component of the nudged and reference
velocity fields, respectively, for Experiment 2. And in
Fig. 7a, b we show the same comparison for the time
evolution of the (normalized) standard deviation, and
the centralized fourth-order moment (normalized by the
target k0), respectively, for Experiment 3. In both cases,
the nudged simulations are able to synchronize to the
reference data while also being able to capture the tar-
get statistic. The standard deviation of the nudged field
departs slightly from the reference as the small scales
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Fig. 2 Visualizations of a
two-dimensional slice of a
the seed (u velocity
component), b the PINN
output when imposing a
mean velocity profile with
c its corresponding
nudging-upscaled field, d
the PINN output with
third-order moment
imposed and e upscaled
field, and f the PINN
output with fourth-order
moment imposed and g
upscaled field. All slices
correspond to time
t = 1.125T0 and z = π/L0

Fig. 3 PINN results for Experiment 2: a Evolution of the
Ld +Lt and Lp losses as a function of the training epoch. b
Evolution of the centralized third-order moment normalized

by the target s0, as a function of the training epoch. The
dashed red line indicates the target value, while the dotted
green line indicates the value of the seed field

are filled by the turbulent energy cascade, but on all
cases the generated flows remain in the vicinity of the
values imposed for the statistical moments.

5 Conclusions

The physics-informed neural network-powered method
we presented is a flexible and powerful tool to prepare
turbulent fields given a target statistical constraint. We
showed three examples, one in which the target was a
mean velocity profile, and two in which the targets were
the values of the third- and fourth-order moments of the
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Fig. 4 PINN results for Experiment 3: a Evolution of the
Ld +Lt and Lp losses as a function of the training epoch. b
Evolution of the centralized fourth-order moment normal-

ized by the target k0, as a function of the training epoch.
The dashed red line indicates the target value, while the
dotted green line indicates the value of the seed field
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to the Fourier modes in which the nudging is imposed, the

spectra for uref and u − uref is only shown in this region.
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0 1 2 3
t/T0

0.95

1.00

1.05

1.10

〈u
2 〉1

/2
/σ

0 (a)

0 1 2 3
t/T0

0.8

1.0

1.2

〈u
3 〉1

/3
/s

0 (b)

u uref
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velocity field, respectively. In all cases, the method was
able to prepare the field while retaining its fluid-like
qualities. The method shows an example of the capa-
bilities of deep learning in data assimilation problems.

Furthermore, we presented a nudging-based upscal-
ing procedure which harnesses the power of already

available and specialized numerical codes to increase
the resolution of the prepared fields. The upscaling pro-
cedure is able to increase the scale separation of the
prepared field (i.e., of generating physically compatible
finer flow features), while maintaining the target statis-
tics. The procedure also acts as a further reinforcement
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of the physics contained in the Navier–Stokes equations.
The combination of both procedures also provides an
example of how neural networks can be combined with
traditional numerical modeling of partial differential
equations to overcome shortcomings in each separate
procedure.

As the method does not use observed data directly,
but knowledge gathered from it, it can serve as a way
to address problems with highly heterogeneous sources,
such as atmospheric flows, where data is obtained from
LIDAR measurements [30], satellite observations, and
many more sources. Besides applications in data assim-
ilation, the proposed method can be useful in the clas-
sical problem of generation of initial conditions for
turbulence simulations [31–33], e.g., for the study of
freely decaying homogeneous and isotropic turbulence,
for grid generated turbulence in wind tunnels, or for
turbulent flows with prescribed inflow boundary condi-
tion [34–36].
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conditions for direct numerical simulation based on
adjoint data assimilation. J. Comput. Phys. 242, 480–
497 (2013). https://doi.org/10.1016/j.jcp.2013.01.051.
(Accessed 11 Aug 2022)

34. L. di Mare, M. Klein, W.P. Jones, J. Janicka, Synthetic
turbulence inflow conditions for large-eddy simulation.
Phys. Fluids 18(2), 025107 (2006). https://doi.org/10.
1063/1.2130744

35. L. Perret, J. Delville, R. Manceau, J.-P. Bonnet, Turbu-
lent inflow conditions for large-eddy simulation based on
low-order empirical model. Phys. Fluids 20(7), 075107
(2008). https://doi.org/10.1063/1.2957019

36. J. Kim, C. Lee, Deep unsupervised learning of turbu-
lence for inflow generation at various Reynolds numbers.
J. Comput. Phys. 406, 109216 (2020). https://doi.org/
10.1016/j.jcp.2019.109216. (Accessed 8 Sept 2022)

Springer Nature or its licensor (e.g. a society or other part-
ner) holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing
agreement and applicable law.

123

https://doi.org/10.1017/jfm.2014.566
https://doi.org/10.1017/jfm.2014.566
https://doi.org/10.1103/PhysRevFluids.6.104607
https://doi.org/10.1103/PhysRevFluids.6.104607
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1063/1.1692799
https://doi.org/10.1063/1.1692799
https://doi.org/10.2514/6.2015-3213
https://doi.org/10.2514/6.2015-3213
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1146/annurev-fluid-010816-060322
http://arxiv.org/abs/2206.01618
https://doi.org/10.1016/j.parco.2011.05.004
https://doi.org/10.1016/j.parco.2011.05.004
https://doi.org/10.1063/5.0095270
http://arxiv.org/abs/2006.09661
https://doi.org/10.3390/en11030543
https://doi.org/10.3390/en11030543
https://doi.org/10.1016/j.jcp.2013.01.051
https://doi.org/10.1063/1.2130744
https://doi.org/10.1063/1.2130744
https://doi.org/10.1063/1.2957019
https://doi.org/10.1016/j.jcp.2019.109216
https://doi.org/10.1016/j.jcp.2019.109216

	Assimilation of statistical data into turbulent flows using physics-informed neural networks
	1 Introduction
	2 Methods
	2.1 Modifying physics-informed neural networks
	2.2 Upscaling the prepared fields

	3 Experiments
	4 Results
	4.1 States generated by the PINN
	4.2 Upscaling

	5 Conclusions
	Author contribution statement
	References
	References




