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Abstract: It has been shown that, for dense, sub-Kolmogorov particles advected in a turbulent
flow, carrier phase properties can be reconstructed from the particles’ velocity field. For that, the
instantaneous particles’ velocity field can be used to detect the stagnation points of the carrier phase.
The Rice theorem can therefore be used, implying that the Taylor length is proportional to the mean
distance between such stagnation points. As this model has been only tested for one-dimensional
time signals, this work discusses if it can be applied to two-phase, three-dimensional flows. We use
direct numerical simulations with turbulent Reynolds numbers Reλ between 40 and 520 and study
particle-laden flows with a Stokes number of St = 0.5. We confirm that for the carrier phase, the
Taylor length is proportional to the mean distance between stagnation points with a proportionality
coefficient that depends weakly on Reλ. Then, we propose an interpolation scheme to reconstruct the
stagnation points of the particles’ velocity field. The results indicate that the Rice theorem cannot be
applied in practice to two-phase three-dimensional turbulent flows, as the clustering of stagnation
points forms very dense structures that require a very large number of particles to accurately sample
the flow stagnation points.

Keywords: turbulent flow; direct numerical simulations; particle-laden turbulent flows

1. Introduction

Turbulent flows laden with inertial particles are widely encountered in nature, playing
a preeminent role in particles dispersion in the atmosphere, rain formation and marine
snow sedimentation, among others [1,2]. They are also relevant for several industrial flows,
such as fuel or coal combustion, fluidized beds reactors and separation techniques. One
of the main challenges to characterizing these flows is the need to simultaneously resolve
the particle positions and velocities and the flow velocity field at their scale [3,4]. All
these configurations involve highly turbulent three-dimensional flows, which can be highly
inhomogeneous and unsteady, where possible finite-size effects from particles may also be
present. In this work we focus on a simplified case: homogeneous isotropic turbulent flows
(HIT) laden with point-like inertial particles.

The stagnation points of velocity fields in turbulent flows present several relevant
characteristics that can be used to gain further understanding of these systems. For instance,
the zero-crossings of fluctuating one-dimensional velocity signals have been extensively
studied, as they can be used to quantify the Taylor microscale λ of homogeneous isotropic
turbulence via the Rice theorem [5–7]. As a consequence, these structures have been inten-
sively studied over the last years, in works that cover the energy cascade of turbulence [8,9]
and atmospheric flows [10,11], among others. They present several advantages, such as
the zero-crossings of a velocity signal being robust when the flow is unsteady and/or the
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calibration of probes is not guaranteed. Furthermore, it has recently been shown that they
can also be used to quantify the integral length scale L [12,13].

While most works focus on zero crossings, others have considered the case of stag-
nation points (STPS), defined as the set of velocity nulls satisfying v(xn) = 0, where v is
the fluid velocity field [14,15]. In particular, Goto and Vassilicos [16] generalized the Rice
theorem, finding a relation between the number density of STPS and λ,

λ = Bn−1/3
s , (1)

with B a constant that may vary with Reλ due to the dependency of the non-Gaussianity
of velocity derivatives with this parameter. While the study from Goto and Vassilicos [16]
confirmed the validity of this theorem, it did not explore a sufficiently large range of
Reynolds numbers based on the Taylor scale Reλ to report on the dependency B(Reλ).

Although these studies concern single-phase turbulent flows, it has recently been
proposed that the Rice theorem can be applied to particle-laden turbulent flows. The work
by Mora et al. [17] developed an experimental method to estimate the carrier-flow turbulent
kinetic energy dissipation rate ε in the presence of inertial sub-Kolmogorov particles at
moderate Reλ. Its foundations rely on the unladen flow dissipation calculation using the
Rice theorem, and the density of zero crossings ns. Moreover, the results from such a model
apply, in principle, also to three-dimensional particle velocities depending on the simplified
equation of motion,

dvp

dt
= − 1

τp
[vp − u(xp, t)], (2)

with vp the particle velocity and u(xp, t) the carrier’s flow velocity evaluated at the particle’s
location xp, and τp the particle viscous response (defined in the next section). This simplified
model relies on two conditions: the diameter of the particles must be smaller than the
Kolmogorov lengthscale of turbulence η, and their density must be much larger than the
carrier’s flow density. The Fourier transform of Equation (2) yields,

v̂p =
û

iωτp + 1
. (3)

As a consequence, the particle field velocity is a low-pass filtered version of the carrier
phase one, with a cut-off frequency of fc = τ−1

p /2π, or fcτη = (2πSt)−1. The cut-off
frequency therefore depends on the Stokes number of inclusions, defined as St = τp/τη ,
with τη = (ν/ε)1/2 the flow Kolmogorov time scale (ν is the fluid kinematic viscosity). We
can then deduce from Equation (3) that if the cut-off frequency fc is large enough to resolve
the dissipation scales, ns should be recovered. Thus, it is possible to deduce the value of
λ from the particles’ velocities. As stated above, while this model has been developed
for 1D signals and zero crossings, Equation (3) is already defined for three-dimensional
velocities, and the zero-crossings number density can also be redefined as the stagnation
points number density [16].

We can therefore conclude, in principle, that the generalized Rice theorem and the
model from Mora et al. [17] can be combined to deduce the carrier phase value of λ using
inertial particles. This rationale can also give access to other small-scale quantities, such as
ε and η, among others. Beyond its fundamental interest, this could also be used to quantify
the carrier phase properties in experiments of two-phase turbulent flows. Indeed, to resolve
the carrier phase simultaneously with the inclusions velocities in such conditions is beyond
the possibilities of current experimental techniques. Finally, to quantify these properties of
the carrier phase would also help to detect the presence of two-way coupling between the
inertial particles and the carrier flow.

The first two conditions for the applicability of this model are: (i) that Equation (3)
holds, and (ii) that the cut-off frequency verifies the relation fcτη = (2πSt)−1 > 10−2. This
condition is proposed based on the fact that Vassilicos and collaborators [8,9] found that,
when low-pass filtering zero crossings ns with cut-off frequencies at least one order of



Dynamics 2022, 2 65

magnitude larger than the Kolmogorov length-scale, such low-pass filtered velocity records
were still able to resolve the value of λ. The last condition, (iii) is to have enough particles
to sample all the stagnation points present in the flow. This latter condition has the added
constraint that stagnation points are known to form dense clusters [14], thus making the
sampling of these points more difficult.

This work aims at studying the applicability of the aforementioned model for stagna-
tion points. We use direct numerical simulations (DNSs) with random forcing, that avoid
experimental errors that may contaminate the counting of stagnation points [7]. The results
could be extended to experimental fields of particles advected by turbulent flows. We will
first focus on verifying the applicability of the generalized Rice theorem (Equation (1))
to our DNSs, which span a wide range of Reλ that goes between 40 and 520. We will
particularly focus on the dependency of B with Reλ, not discussed in previous works, and
in verifying the applicability of Equation (1) to instantaneous velocity fields. Then, on a
second part, we will use the method of Mora et al. [17] to study DNSs of two-phase flows
with Reλ = 240, using up to 107 tracers (i.e., St = 0) that follow the streamlines of the flow,
and inertial particles (St = 0.5) that evolve according to Equation (2). Our results indicate
that the model may not apply unless an extremely large number of particles is injected, as
the clusters of stagnation points require a very large spatial resolution (or particle densities)
to be resolved.

2. Numerical Simulations

Our study was conducted using DNSs at five different values of Reλ using the GHOST

code [18,19]. These simulations follow standard practices regarding their temporal inte-
gration, dealiasing procedures, and have an adequate spatial resolution of the smallest
scales, i.e., κη & 1 (where κ = N/3 is the maximum resolved wavenumber in Fourier
space and N the linear spatial resolution [20]). The Kolmogorov lengthscale η is defined as
η = (ν3/ε)1/4. Fully dealiased pseudospectral methods with second-order Runge–Kutta
methods for the time stepping are used. The 3D simulation domain for all datasets has
dimensions of 2π × 2π × 2π. All relevant parameters can be found in Table 1.

Table 1. Relevant parameters from the DNS used in this study. N is the number of points in the
DNS in one axis, such that N3 is the total number of grid points in the simulation domain. L/(2π)

is the integral lengthscale in units of the domain linear size 2π. η is the Kolmogorov dissipation
scale. Reλ is the Reynolds number based on the Taylor microscale λ. “# snapshots” is the number of
snapshots of the vector fields used for the analysis, and 〈# STPS 〉snps the averaged number of STPS
(i.e., stagnation points) over the total number of snapshots.

Dataset N L/(2π) η Reλ # Snapshots 〈# STPS 〉snps

DNS-64 64 0.304 50 × 10−3 40 80 68
DNS-128 128 0.291 24 × 10−3 70 50 267
DNS-256 256 0.291 12 × 10−3 120 50 700
DNS-512 512 0.238 6 × 10−3 240 15 5707
DNS-1024 1024 0.309 3 × 10−3 520 9 7078

Numerical simulations solve the incompressible Navier–Stokes equations for the
velocity u with a random solenoidal forcing f,

Du
Dt

=
∂u
∂t

+ u · ∇∇∇u = −∇∇∇p′ + ν∇∇∇2u + f, (4)

where p′ = p/ρ (with p the pressure and ρ a uniform mass density), which is obtained from
the incompressibility condition∇∇∇ · u = 0. In Equation (4), Du/Dt = a is the Lagrangian
acceleration of the fluid elements. We define the r.m.s. velocity as u′ =

〈
|ui|2

〉1/2 (where
ui is a Cartesian component of the velocity and Einstein notation is used), the Taylor
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microscale is λ = (15νu′2/ε)1/2, and the integral scale is L = π/(2u′2)
∫

E(k)/k dk (where
E(k) is the isotropic energy spectrum).

The solenoidal forcing f is given by a superposition of Fourier modes with random
phases in the shell with wavenumber k = 1. A new random forcing was generated every
0.5 large-scale turnover time, and the forcing was linearly evolved from its previous state
to the next state along this period of time. This results in a continuous and slowly evolving
random forcing with a correlation time of 0.5 turnover times, which at the largest resolution
considered has an integral scale L/(2π) ≈ 0.309, and which will be useful for simulations
with inertial particles, as discussed below. The simulations also use the largest Reynolds
number attainable at their spatial resolution, with κη ≈ 1 (see Table 1).

We use five numerical datasets, labeled in the following as “DNS-N”, where N is the
linear resolution of each dataset. The Taylor-based Reynolds number, Reλ = u′λ/ν, spans
more than one decade. We have Reλ ∈ [40, 520] for spatial resolutions of 643, 1283, 2563,
5123, and 10243 grid points (see Figure 1). We stored enough snapshots of the vector fields
to have adequate global statistics. For all datasets, we applied the method proposed by
Haynes and collaborators [21–23] to compute the stagnation points. This method goes
through each cell of the DNS domain and uses the velocity values of the eight cell’s corners.
If there is a change of sign in all the three velocity components, a local trilinear interpolation
function is created with the corner’s velocity values. Then the Newton method is used
to find any velocity nulls within the cell. If there is no change of sign in any of the three
velocity components then no velocity nulls should be contained in the cell for a well
resolved DNS. Both elliptic and hyperbolic stagnation points were considered. More details
about this method can be found in references [14,21].
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Figure 1. Power spectral density as a function of the wavenumber normalized by the Kolmogorov
scale η and velocity uη (defined as uη = (νε)1/4), for the five DNSs at different resolutions. The
dashed line represents a Kolmogorov −5/3 power law scaling shown as a reference.

For DNS-512 we also have data of tracers and inertial point particles without gravity.
Particles are integrated following Equation (2), which can be written as:

dxp

dt
= vp,

dvp

dt
=

1
τp

[
u(xp)− vp

]
. (5)

These equations are integrated with a high-order Runge–Kutta method to evolve in
time and a high-order three-dimensional spatial spline interpolation to estimate the fluid
velocity u(xp) at the particle position (see [24,25] for details). Simulations with particles are
conducted as follows: first, a DNS of the Eulerian flow is conducted without particles, until
a turbulent steady state is reached. Then, particles are injected with a uniform random
distribution in space, and with the same initial velocity as the velocity of the fluid element
at the particle position. Particles are integrated for several turnover times (in the case of
tracers) or for several particle relaxation times (in the case of inertial particles) before data
starts to be collected for the analysis.
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In order to apply the method described in the introduction, the particles’ velocities
vp were interpolated using the ‘griddata’ function in the interpolate module of the SciPy
library. Particles’ velocities were thus interpolated on the DNS Eulerian grid points with a
linear interpolation. For points outside the particles’ position range, on the boundaries of
the DNS domain, the nearest method was employed, obtaining a synthetic velocity field
from the particles for each snapshot. We therefore proceeded to apply the method from
Haynes [21] and collaborators here too, to detect the stagnation points.

As discussed above, we used two types of particles: inertial particles with St = 0.5 and
tracers with St = 0. While tracers are expected to sample the flow uniformly, the former
have been reported to cluster [14]. For each type of particle, two DNSs were run, one with
106 particles and another with 107. This will allow us in the next sections to analyse the
influence of the number of particles in the convergence of the Rice theorem, and to verify if
it actually applies for our datasets (we remind the reader that particles are injected only
for the N3 = 5123 run, i.e., with ≈ 1.3× 108 Eulerian grid points). In the following, our
datasets with particles will be labelled as:

• DNS-512-1: N = 512, 106 tracers, St = 0.
• DNS-512-2: N = 512, 106 inertial particles with St = 0.5.
• DNS-512-3: N = 512, 107 tracers, St = 0.
• DNS-512-4: N = 512, 107 inertial particles with St = 0.5.

As each run was performed independently, and given that we used random forcing, the
temporal evolution of the single-phase flow is not expected to be identical for all datasets.

3. Results
3.1. Validation of the Generalized Rice Theorem in Single-Phase Turbulent Flows

We first verify the validity of the generalized Rice theorem for our DNSs. To this
end, in Figure 2 we plot the prefactor B in the Rice theorem (defined in Equation (1)) as a
function of Reλ. Figure 2a is deduced for each instantaneous Eulerian velocity field from the
DNSs at N = 512, with Reλ also computed instantaneously for each snapshot (ns f denotes
the density of stagnation points in the Eulerian fluid velocity). On the other hand, Figure 2b
shows the value of B for all resolutions N in the DNSs, and averaged over all snapshots
corresponding to that run as detailed in Table 1 (Reλ is also computed from the averaged
characteristic quantities). Our results are in good agreement with the generalized Rice
theorem, as we find B is of order unity and has a small dependency with Reλ. Furthermore,
our results are consistent with the study from Goto and Vassilicos [16] on a similar flow.
Note that while this study focused on the range Reλ ∈ [60, 150], in Figure 2b we extend the
validity of the theorem to Reλ ∈ [40, 520].
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Figure 2. Prefactor B in the Rice theorem, as a function of Reλ, and computed from the density of
stagnation points of the Eulerian fluid velocity ns f . In panel (a) we show the instantaneous value of
B versus an instantaneous Reλ for the 512-DNS simulation. Panel (b) presents an averaged B plotted
against Reλ computed from averaged quantities, for the five different DNS resolutions.
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Our DNSs also show that B is a slowly decreasing function with Reλ, and therefore
presents the opposite trend as the one found for zero-crossings of the fluctuating velocity [8]
(but consistent with the constant value found in [9], where the same flow was studied
for a large range of Reλ). This result is surprising, as it suggests that the contribution of
small-scale intermittency effects decreases when Reλ is increased.

The good collapse of all fields shown in Figure 2a,b suggests that the generalized Rice
theorem is valid not only when averaging in time Eulerian fields, but also for instantaneous
realisations. To confirm this feature, Figure 3a shows the temporal evolution of n−1/3

s f and
λ for DNS-512-1 and DNS-512-2 for the Eulerian fluid velocity field. It can be observed that
both curves present almost identical trends, with values of B that remain almost constant
(see Figure 3b). We therefore conclude that the generalized Rice theorem applies to our
datasets, for a wide range of Reλ as well as for instantaneous velocity fields.
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Figure 3. (a) Density of the velocity stagnation points n−1/3
s f for the fluid phase (symbols), and Taylor

microscale λ (lines) along time. (b) Time evolution of B, i.e., the ratio of n−1/3
s f to λ. This figure only

shows the fluid phase data of the DNS-512-1 and DNS-512-2 simulations.

3.2. Validation of the Rice Theorem in Two-Phase Turbulent Flows

We now proceed to study the applicability of the generalized Rice theorem to particle-
laden flows. It can be easily seen that for both St = 0 and St = 0.5 the condition fcτη =
(2πSt)−1 > 10−2 holds. Additionally, the applicability of Equation (2) is trivially valid
in our case, as particles evolve according to it in the simulations. Figure 4 shows the
reconstructed (i.e., interpolated) x velocity field component using 107 particles with St = 0
or St = 0.5, compared to the actual Eulerian flow velocity component. Fields are very
similar, although not identical. The squared point-wise differences between the three
velocity fields are presented in Figure 5. Discrepancies between the flow field and inertial
particles are expected (Figures 4c and 5b), as Equation (3) implies that the STPS may be
preserved but not the velocity values elsewhere. Furthermore, this is also expected when
comparing the flow velocity and the tracers (Figure 4a,b respectively, or see Figure 5a), as
the latter are also expected to preserve the null points but, depending on the number of
particles present in the flow, could result in a coarse-grained reconstruction of the former.
Moreover, as expected, the tracers’ reconstructed field shows fewer differences with the
flow field than the inertial particles (see Figure 5a,b).

We can therefore study the validity of Equation (1) in our DNSs. A first test is to
compare the number of STPS detected for the carrier phase and for the interpolated (tracer
or inertial) particle velocity fields (Figure 6a). Surprisingly, we see that for any of the
particle sets, a smaller number of STPS are detected, and even when injecting 107 tracers
we have 30% fewer STPS in the interpolated field (Figure 6a). This surprising result points
towards the inapplicability of the model from Mora et al. [17] to our datasets. This is
confirmed when comparing n−1/3

sp for the tracers’ interpolated field and λ in Figure 6b, as
we find values of B to always be larger than those found for the Eulerian flow velocity
in Figure 3b. Nevertheless, Figure 6b suggests that, while the generalized Rice theorem
does not apply exactly, some trends are still recovered. In other words, a calibrated value
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of B(St, Npart, . . . ) (where Npart is the total number of particles) could be used if data are
available from, e.g., numerical simulations.
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Figure 4. (a) Two dimensional (2D) slice of the fluid velocity at x = π/2 and t = 22τη . (b) Same slice
showing the tracers’ interpolated velocity. (c) Same slice showing the inertial particles’ interpolated
velocity. In (b,c), 107 tracers or particles were used. In all panels, blue dots correspond to the positions
of STPS in the single phase flow. Black and red circles correspond to STPS detected from the tracers
and inertial particles fields, respectively. As the amount of STPS in a 2D slice can be small, in all panels
we show all STPS in a slice with 6 grid points in x (i.e., the STPS detected in x ∈ π/2± 6π/512).
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Figure 6. (a) Number of stagnation points in the interpolated velocity field for tracers (green dia-
monds) and inertial particles (red circles), normalized by the number of stagnation points in their
respective fluid phase versus the time normalized by τη . (b) Temporal evolution of the stagnation
points density n−1/3

sp for the interpolated tracers and inertial particles velocity (symbols), and Taylor
microscale (lines). The inset shows the time evolution of the prefactor B = n−1/3

sp /λ of the Rice
theorem for the four two-phase flows DNS. Note the simulations with 107 particles are shorter
in time.

As the only condition that may be violated is to have enough particles to sample all
stagnation points in the flow, we will now analyse this hypothesis. For all N = 512 DNSs,
we find that the carrier phase has values of n−1/3

s f of around 0.3. This implies that we have
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around 30 stagnation points per unit of volume (with a total volume of (2π)3 in our DNSs).
Conversely, we have 4× 103 and 4× 104 (inertial or tracer) particles per unit of volume
when injecting, respectively, 106 and 107 inclusions.

These densities imply that, in principle, all stagnation points should be resolved by the
interpolated fields. However, as we discussed in the introduction, this consideration does
not take into account the clustering of stagnation points. Indeed, Figure 7a,b shows
the presence of strong clusters of STPS in the flow. Using similar DNSs, a previous
work [14] showed that stagnation points form very dense clusters, and that clustering
increases significantly with Reλ (as shown in Figure 7c). Such clustering (against, e.g., an
homogeneous spatial distribution of points) implies that to resolve all stagnation points
would require injecting many more particles, as dense regions of stagnation points also
require larger densities of particles to be resolved with our interpolation scheme. This can
also be seen in Figure 4, where the interpolated fields for both tracers and inertial particles
do not recover all stagnation points in dense regions. We remark that tracers are instead
distributed homogeneously in space, while inertial particles are also known to form clusters
in turbulent flows, but the positions of such clusters are not directly related to the positions
of those formed by the stagnation points [14].
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Figure 7. Illustration of the fluid velocity clustering of stagnation points in DNS-512-2. (a) Three
dimensional (3D) view of the fluid velocity stagnation points positions for t = 22τη . (b) 2D view
of an y, z plane at the same instant for a 6 grid points slice with x ∈ π/3± 6π/512. (c) Ratio of the
standard deviation of the Voronoï cells volumes of stagnation points with respect to the standard
deviation of a Poisson distribution (RPP) for the DNSs with the five resolutions. This parameter is
expected to quantify clustering intensity [14] (i.e., when σV/σRPP increases, clustering becomes more
important).

Besides this effect, another important effect that can explain why the particles see
fewer zeros than the number of STPS in the Eulerian field is associated with the stability
of stagnation points in 3D flows [26]. Even in the simpler 2D case, most instantaneous
stagnation points can be classified into elliptic or hyperbolic types, depending on their local
stability. Tracers and inertial particles can be expected to spend longer times around elliptic
points, whereas hyperbolic points should quickly push nearby tracers and inertial particles
along their unstable manifolds. In 3D, the possible topologies of velocity field nulls are
more complex, but any 3D stagnation point with an unstable manifold should have the
same effect. As a result, STPS are sampled differently depending on their topology, and
some STPS will be less sampled than others. This can be another important reason behind
the lower number of detected zeros from the 3D particles’ fields.

4. Conclusions

Throughout this work we used DNS data to study the applicability of the generalized
Rice theorem to single and two-phase flows. Our results can be summarised as follows:

• We verified the validity of the generalized Rice theorem for our dataset, which covers
the range Reλ ∈ [40, 520]. Furthermore, we showed that the prefactor B in Equation (1),
that quantifies the non-Gaussianity of velocity derivatives, has a weak dependence
with Reλ, and that it tends to decrease when this parameter is increased.
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• Furthermore, we showed that the generalized Rice theorem applies for time-averaged
three-dimensional velocity fields, but also for instantaneous realizations.

• We proposed an interpolation scheme to reconstruct the stagnation points using
the particles’ velocity field. Our results indicate that the Rice theorem cannot be
applied in practice to two-phase three-dimensional turbulent flows, as the clustering
of stagnation points forms very dense structures that require a very large number of
particles to accurately sample the flow stagnation points. Even with 107 tracers or
inertial particles, we did not manage to apply the Rice theorem satisfactorily.

• We find that this lack of resolution of stagnation points is consistent with the strong
clustering of STPS, as it implies the presence of very dense regions of these points,
which require the injection of a very high number density of particles to be resolved.
Another possible explanation for the lower number of STPS detected with the particles’
velocity field is the local stability of 3D STPS with unstable manifolds.

• While the number of the carrier phase STPS is always larger than the one obtained
when using the interpolation scheme proposed here, we do find that they evolve over
time following similar trends. This feature requires further study to be validated.

In conclusion, our study suggests that the generalized Rice theorem and the ratio-
nale from Mora et al. [17] cannot be used in a practical way to reconstruct the carrier
phase from particles’ measurements in turbulent two-phase flows. Its application would
require a number of particles that would make such study extremely hard using modern
experimental techniques.
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